A LINEAR ANALYSIS OF STEADY SURFACE WAVES ON A VISCOUS
LIQUID FLOWING DOWN AN INCLINED PLANE

by

P. Smith*

1. Introduction

The steady flow of a viscous liquid of constant depth down an inclined
plane is a well-known simple example of a free surface flow (it is given,
for example by Berker [1], p. 16). The simplicity of the solution suggests
that is a useful starting point for an investigation of steady viscous waves
caused by the introduction of rigid bumps and obstacles into the bed of
the stream. It is assumed that the ratio of the maximum disturbance height
to the mean depth of liquid is small, and that, as a consequence of this,
the linearization of the Navier-Stokes equations and the boundary conditions
is justifiable,

The nature of the boundary-value problem suggests that the character-
istics of the free surface will depend on three parameters - the angle of
inclination B of the plane, the Reynolds number R and the ratio of the lig-
uid depth to a representative disturbance length, For example the free
surface of a deep layer of liquid is unlikely to be significantly affected
by small variations in the lower boundary, A large Reynolds number could
lead to wave breaking, instability and turbulence in a thin film of liquid.
The precise interaction between these parameters is not easy to evaluate,

The simplest problem is that of slow motion in which Reynolds number
is small and the inertia terms are negligible compared with the viscous
ones., This class of flows is solved fully for linearized boundary conditions,
the free surface and all flow variables being expressed as Fourier integrals
containing an arbitrary perturbation term. This is achieved by standard
Fourier transform techniques, The flow over a wavy boundary of long wave-
length is looked at in some detail. For a smooth hump in the inclined plane,
asymptotic expansions for the free surface can be found for shallow flow.
This is essentially a long wave theory, and it does suggest a novel asymp-
totic method based on an iteration procedure in which small inertia effects
can be incorporated,

The stability of surface waves on an inclined viscous flow has been dis-
cussed previously by Benjamin [2] (a list of more recent papers on this
topic is given by Wehausen [3], p. 575). In Benjamin's work the stability
of the free surface is investigated when a sinusoidal perturbation in space
and time is imposed on it and allowed to develop, Since instabilities are
largely a consequence of inertia effects they are unlikely to appear in the
slow motion of a liquid. However the later work indicates how the crest
of a single wave grows in height as the Reynolds number is increased.
An experimental study of waves on water films has been conducted by Binnie
[4],[5]. Experimental confirmation of the results presented here should
not be difficult for low Reynolds number. For liquids of low viscosity such
as water surface instabilities could prove difficult to eliminate since they
can arise at any Reynolds number if they have the appropriate wavelength,

The analysis of boundary-value problems in free surface viscous flow is
difficult even with the equations and boundary conditions linearized. This
class of steady flows provides probably the simplest type which are capable
of detailed analytic treatment.
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2. The basic flow

The laminar flow of a viscous liquid down an inclined plane -supplies a
ready-made rectilinear motion which is maintained by a balance between
gravity and the viscous drag on the bed of the stream. Take a coordinate
system as displayed in figure 1. The flow is entirely two-dimensional with

Figure 1. The coordinate scheme.
a parabolic velocity distribution given by
ul® = gy (2h.- y) sin B/2v (2.1)
where v is the kinematic viscoSity of the incompressible liquid.
Benjamin (2] remarks that the character of any disturbance to the flow
depends largely on the Reynolds number defined by R = P/v, whet-e P is

the rate of volume flow per unit span of the stream, Clearly P = (h)
and R = h3g sin B/ 3v% We are interested in the case of small R

3. The linearized equations and boundavy conditions

The two-dimensional Navier-Stokes equations can be written

puu, + pvuy = -py + pg sin B + pv (uy, + ug), (3.1)

puvy + pvvy “Py - PE cos B+ pv (Vi t Vyy)s (3.2)
where p is the pressure and the two components of the gravitational force
have been included. In addition the velocity components u and v are related
through the continuity condition

ay + v, = 0. (3.3)

Let the lower boundary of the flow be changed to y = 7n;(X) where r(x)
is small. We shall say more about comparisons of typical lengths later.
Suppose that the consequent free surface perturbation becomes y = h + 1,(x)
with the tacit assumption that n,(x) is also small. The no-slip condition gives

u=v=20 (3.4)
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ony = ny(x). The kinematic surface condition becomes
un '2 -v=20 (3. 5)

ony = nyx). The stress must also be continuous across the surface with
the result that

(-p + 2pvuy)nt, - pv(uy + V) 0, (3.6)

pV(uy + vy - (-p + 2PVvy) 0, (3.7)

nere is has been assumed for convenience that the external pressure is

zero, This means that the unperturbed pressure distribution in the liguid
has been taken as

pt” (v) = pg(h - y)cos B (3.8)
this will be the actual pressure apart from an additive constant. Surface
tension is absent. There are five boundary conditions to be satisfied which
also contain and determine the unknown function ny(x).

We now adopt a standard perturbation procedure and write

u = ul® + u(l)' v=v® p=p®4 4 (3. 9)
The substitution of these expressions into the Ne -ier-Stokes equations (3.1)
and (3. 2) and the rejection of terms of higher Jegree than the first in the
superscript (1) leads to

pu(O)ug(l) + Pv(l)ug,o) = - p(xl) + p,,(u%) 2 u‘l)), (3.10)

pu® v = - p(yl) + pr (D) + V(yjy)) (3.11)
The equation of continuity remains as
1 1) -
oD+ e = o, (3.12)
The boundary conditions (3.4) - (3.7) are now completely linearized in

terms of u®, v(D, p) n, and n, and its derivative. With Taylor expan-
sions used where necessary, they become

u{? (0)ny(x) + uM(x,0) = 0, (3.13)
viD(x,0) = 0, (3.14)
u®myny(x) - v(x,h) = o, (3.15)
uld ()my(x) + o) (x,h) + Vi, h) = o0, (3.16)
p{O(h)nyx) + pt¥ (x,h) - 2pwv{V(x,h) = o. (3.17)

The function n, can be eliminated between (3.15), (3.16) and (3.17) to leave
the two free- surface conditions:

ulD v x,h) + ul®(n) {u‘y?(x,h) + v (x, h) } = 0, (3.18)

PO My, h) + u® @) {pP(x,h) - 200 (x,h) } 0. (3. 19)

When the boundary-value problem has been solved, n, can be found from
(3.15).



276 P.Smith

4. Stokes flow

The creeping flow of a liquid down the plane is the simplest case, For
small Reynolds number R' we can discard the inertia terms on the left-
hand side of equations (3.10) and (3.11). The equation of continuity (3,12)
implies the existence of a perturbation stream function «,//(1) defined by

ut® = g and v = - g, This stream function satisfies the familiar
biharmonic equation
v o, (4.1)

The boundary conditions (3.13), (3.14), (3.18) and (3.19) become

U (x,0) = -2hkm(x), ¢ (x,0) = 0; (4. 2)
2047 (x,h) + WYL (x,b0) - Wyl (x,b) = 0, (4. 3)
2 cot B ¥V (x,h) + KPR (x,h) + h2¢/§§)y(x,h) = 0, (4.4)

where k = g sin 8/ 2v. In these equations u(% and 13(0)’ given by (2.1) and
(3.8), have been introduced and the pressure p{, given by (3.10), has
been substituted into (4.4), Note that if n,(x) is an even function of x then
Y()(x,y) will only be even if cot B = 0 since the only non-symmetric term
occurs in the undisturbed transverse pressure gradient in (4.4). The free
surface will only be '"in phase" with the disturbing effect for a vertical
film of liquid.

The solution of (4.1) is required in the strip -oo< x < oo, 0 { y < h and
this invites the application of Fourier transform methods. Let the Fourier
transform of (¥ (x,y) with respect to x be

T @y) = [pexyre ™ ax,

The transform of the biharmonic eguation is

-~ 1 2-- 1 ko

Sy - 240y +at D= 0, (4.5)
and the transformed end conditions are

9 (a,0) = - 2hki(a), 7%@,0) = 0; (4.8)

2 + ®0)PP (e, h) + b, h) = o, 4.7

2 ia cot B 7@, h) - M (e, b) + bgSle,h) = o, (4. 8)

where 7,(e) is the Fourier transform of n;(x). The solution of the system
represented by (4.5) - (4. 8) is a piece of tedious but routine analysis which

gives
w(l)(oz,)’) = 2hki; (a) [cot B {h sinh ey - y sinh oh cosh a(h-y) }— p
-igh {(h-y')(l + oh?) sinh ey + yeh cosh a(h-y) cosh ozh} ]/Q(a’,h,g)’ (4.9)
where

Q(z,8) = (sinh z cosh z - z)cot B + iz%(1 + 2% + coshz). (4. 10)
Equation (4.9) gives the Fourier transform of the perturbation stream func-

tion, (and hence the velocity components and pressure) can be expressed
as a Fourier integral by the inversion theorem.
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The transform of the free surface can be obtained by taking transforms
of (3.15):

Tig@) = - ¥V (@, h)/ kn®.
The inversion theorem then gives

nax) = -z—l,,f M()e'™ G (ch, B)da S (4.11)
where (4.9) has 1;een substituted and where

G(z,B) = 21iz? coshz/Q(x, B). (4.12)

Integral (4.11) cannot be evaluated explicitly in general, However some
special solutions can be obtained by inverse methods., For example, in the
case B = 3x, the choice of

f,e) = de®!™ (1 + o?h? + cosh®ah)

leads to
d c-h c+h
To(x) = — + .
T (c-h)2 + x2 (c+h)2 + x2
and
d 3¢ \ d?{ 1 c-2h c+2h
ny®) =— | ——— - ch’—

+ +
2(c2+c?) dx?|c*? | 4f(c-2h) + x?} 4{(c+zh)2 + xz} ,

provided ¢ > 2h, The required transforms can be read off from the table of
Fourier cosine transforms given by Erdélyi [6].

5. The stationary sine wave

The simplest case in Stokes flow occurs with the bed in the shape of a
cosine wave in which n,(x) = d coswx. This particular boundary-value prob-
lem can be solved quite easily ab inifio, but since we have already derived
the transform of the stream function in (4.9) we can read off the solution by
expressing the Fourier transform of n,(x) in terms of generalised functions.
If 6(x) is the Dirac delta function, then (see Jones [7], p.469)

M) = 1 {5(e-w) + se+u)}
with the result that
vM(x,y) = 2khd Re { [cot 8 {h sinhwy - y sinh wh cosh wh-y) } -
-iwh {(h-y)(1+u?h2) sinh wy + ywh cosh w(h-y) cosh wh } ] elwx / Q(wh, B) } ) -1
It follows from (4.11) that 4

Myx) = d Re {G(wh,B)ei‘“x } (5. 2)
Put G (wh,B) = Ael so that (5.2) reads as

Ny(x) = Ad cos (wx +7) (5. 3)

where
2 . 2 .2 4 2 2 2 |}
A = 2¢” cosh €/ (e - sinh € cosh €)"cot’8 + € (1+€ + cosh®e)” ;, (5.4)
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tan y = (sinh € cosh € - €)cot B/€l + 2 + cosh?¢), (5. 5)
and € = wh, which is f)roportional to the ratio of the mean depth of liquid

to the wavelength 27/ w,
A graph of the surface amplitude ratio A against € is shown in figure 2

A
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Figure 2. The amplitude ratio A of the surface wave plotted against the depth ratio e for three values of

cot B.

for three values of cot §. For any given depth the amplitude decreases as
the angle of inclination 8 decreases, the maximum amplitude occurring for
flow down a vertical wall (cot 8 = 0), For all values of B, the amplitude
decreases as € increases. This is to be expected since the surface becomes
insensitive to small variations in the stream bed for a large depth of liquid.

The two waves are out of phase except for flow down a vertical plate,
The surface wave precedes the forcing wave by a distance y/w although
with reduced amplitude, A graph of tan v tan 8 against € is shown in figure 3,
The curve has a maximum at € = 1,25 approximately, which indicates that
the greatest difference for any inclination B occurs for this depth-ratio of
liquid, Its value is given by tan v = 0.19 cot B from which we see that
v varies between 0 for 8 = 37 and g7 for B = 0, If the li%uid adheres to
the underside of and inclined plate, § lies in the range 57 < 8 < 7 and
the surface wave follows the forcing wave by a distance v/w.

We would expect this phase difference between the surface wave and the
bed of the stream to lead to separation of the main stream from the bound-
ary in the troughs of the wave. This streiches the linear theory a little
but since the results seem plausible, the matter is worth pursuing. The
condition for separation is given approximately by n.grad u = 0, where
n is the normal to the boundary and account has been taken of the small
slope of the boundary. This represents the point at which the stream-line
separates and the normal velocity gradient reverses, Appropriately linear-

ized this condition becomes
0 1
WP (o) + ulf ()nyx) + uf’ (x,0) = 0. (5.6)
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Figure 3. The variation of phase difference A with depth.

The conclusions can only remain tentative since (5.6) contains a mixture
of terms of different orders.

The introduction of the stream function g[/(l)(x, y) from (5.1) into (5.6)
leads to

d CZcot® B + D?

(5.7)

h (BC - AD) cot 8 sin wx - (AC cot? B + BD) coswx,
where the constants A, B, C, D are given by

A = € cosh 2 - 3 sinh 26, B = €?(€ sinh 2¢ - cosh? ¢),

NI

C = 3 sinh 2¢ - €, D = €%(1 + €2 + cosh? ¢).

The critical depth-ratio (d/h),, at which separation starts to occur for
fixed € and cot B will be given by the envelope of (5.7) with x treated as
the parameter. This envelope can be derived in the usual way by eliminating
x between (5.7) and the equation obtained by equating to zero the partial
derivative of (5.7) with respect to x:

tan wx = (AD - BC) cot 8/(AC cot? § + BD). (5. 8)

The critical depth-ratio which results from the elimination of x between
(5.7) and (5.8) is presented in figure 4 for selected values of cot 3, Re-
membering that the validity of the approximation depends on d/h being
small, we observe that separation will occur for given values of ¢ and
cot B if d/ h exceeds the critical value indicated by the appropriate curve,
For deep flow over a wave of short wavelength the angle of inclination
becomes irrelevant. This follows since

(_d,_> “’—1- as e—co
h /oy 2€

independently of cot 8. The figure indicates that this holds with reasonable
accuracy for € > 3.
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Figure 4, The critical curves for seperation for several values of cot B.

6. Asymptolic estimates

Wenote firstly that discontinuous boundaries can be treated. For example,
the finite step represented by

mE) = d, x| <a; mE) =0, [x][>a

has the Fourier transform T7e) = 2d sin ea/a. The corresponding free
surface for laminar flow over this step is, from equation (4.11),

o0

mx) = 5 [ SR X G on, pda,

-

A few test calculations have shown that the flow displays the same general
characteristics as flow over a wavy boundary. The behaviour of G for
large |a| also ensures that the free surface is a smooth function of x,

The flow over a single smooth hump is now considered since it suggests
generalisations which include small inertia effects, In order to fix ideas
we shall concentrate on the particular perturbation given by

m(x) = da?/ (x® + a?),

with the understanding that the methods can be used equally successfully
for other shapes. The perturbation is symmetric about x = 0 with iis
maximum height of d there. Its Fourier transform is

m) = adre™® ™

and it follows again from (4.11) that

%) = % ad | e?lel +1G @h, Bda,
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= 1dx { J el Gg,g)dz + [ earmzva g (‘-z,B)dz} (6. 1)
0 0

where A a/h., Our aim is the construction of an asymptotic expansion
of these integrals for large A, which corresponds to a shallow-liquid ap-
proximation, Since G(z, ) is a regular function of z in some neighbourhood
of the origin in the z-plane, we can write

G(z.B) = I g,B)" for |z| < &§) (6. 2)

for some §(f) > 0. A simple estimate also shows that | G (z,B)| decreases
exponentially as Re (z)—+oo. These conditions are sufficient for the appli-
cation of Watson's lemma (Copson [8], p. 49) to both integrals in (6. 1)
as |[(a-ix)\/ a|-sein the first integral and as | (a+ix)\/a|—>ewin the second.
Reading off the expansion, we find that

s -n-1 o -n-1
nyfx) ~3d) [,Eo g.®nt { @oon/al™" + T (-1)g,@n! {@rixn/al }

~ £ (-irg,®) 1) @), 6. 3)

as A-ocofor any positive a and any fixed x, In the last expansion we have
deliberately written the terms in derivatives of n,(x) since it suggests a
general method of solving the problem asymptotically. We shall develop
this is the final section.

The first six coefficients in the power series expansion for G (z,B) given
by (6.2) are:

g8 = 1, g = 3i cot B,

g,(B = -(9 + 2 cot?f)/ 18, g,B) = -i cot B(117 + 10 cot?p)/ 270,
3 1 1

g4(B) =5 - 3—(3)- cot? B8 - gﬁcot4 B,
: 3841 41 2 1 4

gﬁ(B) = i cotf ('55%+ 370 cot B - 343 cot B>

A comparison of the terms in the expansion indicates that h cot 8 should
not exceed unity for reasonable numerical results not requiring more than
the six coefficients given above, The reason, in part, for this restriction
lies in the behaviour of A(B) in (6.2). As cot B—oo we find that A(B)— 0.
this being caused by a pole of G(z,p) which is situated on the imaginary
axis in the z - plane. The surface wave in a particular case is shown in
figure 5 of the next section. The special example outlined here has its
counterparts for humps of other shapes and various asymptotic methods
(such as the method of steepest descent) can be used in the shallow-liquid
approximation. The asymptotic expansion of the free surface is given by
(6. 3) provided the Fourier transform is an exponentially decreasing function
as |a| increases.

7. An asymptotic solution comtaining small inertia affects

The elimination of the pressure p(¥ between (3.10) and (3.11) with the
inertia terms retained leads to

vl + - v - @)+ O e - Ol - D < o,

{
In terms of the stream function y{! this equation becomes

YYYY XXYy XXXX XXX

A 2¢/(1) + (’//(1) - %y(zh_y)w(l) -
2h

- 3R ) - 3B
;}wah gy —;1—59’/,( =0, (7.1)
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where u(® has been introduced from (2.1) and R is the Reynolds number
defined in Section 2, Of the boundary conditions, (4.2) and (4.3) are un-
changed, but (4. 4) is modified by the additional inertia effects in the pres-
sure gradient. Substituting for the pressure gradient p{!) from (3.1) into
(3.19), we deduce that (4.4) must be replaced by

4 cot B ¢V (x,h) + 6h¥D(x,h) + 20 D(x, h) - 3RhYL (x,h) = o. (7.2)

XXy

We now attempt an asymptotic solution
vz, 3 ~ & tom ), (7.3)

where t,(y) is found by iteration, the successive steps in the iteration being
determined by equating like derivatives of n,(x) in equation (7.1) and in
the boundary conditions (4. 2), (4.3) and (7. 2). Justification for this method
stems from the asymptotic behaviour of the Fourier integral for slow
shallow flow over a hump.

Routine methods give the first three equations

t(l)lll = 0,

3R 3R
tyr - — y(2h-y)tit - —to = 0,
2h h

t'2“‘ + ottt - 3_& y(2h-y)ti' - -3———1; = 0,
°  o2ns h

subject to the three sets of end conditions

§(0) = 0, tho) = -Zhk, 2to(h) + hAY(h) = 0, () = O;

t,(0)
4 cot B to(h) - 3Rht:)(h) + tht‘ln(h) = 0;

L]

ti(o) = 0, 2t,(h) + b%t!'(h) = O,

to(0) = ti(0) = 0, 2ty(h) + W2t (h) - hity(h) = O,
4 cot B ty(h) + 6h%ti(h) + 2h’tYt(h) - 3Rht}(h) = O.

All solutions are polynomials in y and, in principle, any number of terms
can be obtained. For the system displayed above

ky(y-2h), t(y) = bky’(y-2h) cot B,
- lin®%(9 + 2 cot®B) + gkhy%(6 + cot®B) - tky*

2
, Blyeot B gns - 14n2y3 + Thyt - y9).
420n°

toly)
t,(y)

Note that the Reynolds number does not appear in the first two terms of
the expansion. The free surface is now given by the integral of (3.15):
1

) ~ - 0 e, 0) ~ - ]t B0+ ]

2 1 ' R
~7y(x) + 3h cot B ni(x) + W(z + 5 cot’ B - 75 cot B)nY(x).
Some confidence in the method is gained by observing that expansion (6. 3)

reappears if R is put equal to zero in the expansion above.
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We now consider the particular case nm(x) = da?/(x? + a?) again. Non-
dimensionalize x by introducing X = x/a, whence

N4(x) 1 2Xe cot B R (3x% - 1)e?
~ 5~ 55 (1+%cot23———cot3)———-—-——-2~é—-,
d 1+ X% 30 + X3 21 9(1 + X9

where ¢ = h/a,
Figure 5 shows the free surface shape of nz(x)/d plotted against X with

le/d
15-T1- R=60

05——

-20 -10

10

L l ] Jx
-20 210 0 10 20

Figure 5. The shape ot the surface wave for several values of the Reynolds number R. The perturbation wave
is given below, The vertical scale is exaggerated.

the perturbation n, (x)/ d displayed in the lower curve, The vertical scale
is of course exaggerated since X is dimensionless, The parametric values
€ = 0.25and cotB = 4 were chosen to make the numerical work tolerable
and at the same time to achieve a large phase difference between the per-
turbation and the free surface for R = 0. The surface is shown for R = 0,
20, 40, 60. The figure indicates that the wave becomes sharper as R in-
creases, and for R greater than about 8 its amplitude exceeds that of the
disturbance., The inertia effects also carry crest of the wave into phase
with the disturbance,

The kinematic viscosity of glycerine at 20° C. is 6,798 cm2/ sec. ([9],
p. 7). We can easily compute the depth of liquid which corresponds to the
Reynolds number R = 40 for cot B8 = 4. From the definition of R, h =
(3Rv¥ 9 sin B)'/® = 2,86 cm for glycerine in the case cited. This adds a
quantitative view of figure 5.
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